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Abstract— In recent years, wearable robots (WRs) for 
rehabilitation, personal assistance, or human augmentation are 
gaining increasing interest. To make these devices more energy 
efficient, radical changes to the mechanical structure of the 
device are being considered. However, it remains very difficult to 
predict how people will respond to, and interact with, WRs that 
differ in terms of mechanical design. Users may adjust their gait 
pattern in response to the mechanical restrictions or properties of 
the device. The goal of this pilot study is to show the feasibility of 
rendering the mechanical properties of different potential WR 
designs using the robotic gait training device LOPES. This paper 
describes a new method that selectively cancels the dynamics of 
LOPES itself and adds the dynamics of the rendered WR using 
two parallel inverse models. Adaptive frequency oscillators were 
used to get estimates of the joint position, velocity, and 
acceleration. Using the inverse models, different WR designs can 
be evaluated, eliminating the need to build several prototypes. As 
a proof of principle, we simulated the effect of a very simple WR 
that consisted of a mass attached to the ankles. Preliminary 
results show that we are partially able to cancel the dynamics of 
LOPES. Additionally, the simulation of the mass showed an 
increase in muscle activity but not in the same level as during the 
control, where subjects actually carried the mass. In conclusion, 
the results in this paper suggest that LOPES can be used to 
render different WRs.  In addition, it is very likely that the 
results can be further optimized when more effort is put in 
retrieving proper estimations for the velocity and acceleration, 
which are required for the inverse models. 

Keywords: gait, rehabilitation robots, wearable robots, adaptive 
frequency oscillators.  

 

I. INTRODUCTION 

To assist physically disabled, injured, and/or elderly 
persons, a wide variety of supportive devices are being 
developed. These devices can consist of exoskeletons, 
prostheses, or other wearable mechatronic devices and can be 
used for several applications, such as rehabilitation, personal 
assistance, human augmentation, and more.  

Robotic applications for training and assistance have 
rapidly evolved during the last decade. The first generation of 
robotic devices was mainly directed at providing gait training 
in a controlled environment. They perform repetitive tasks and 
are often used in combination with a treadmill. These 
traditional robotic gait trainers are now expanding to mobile 
systems, that can be used outside the clinic and that can assist 
or augment patients during several activities of daily living. 
These mobile devices are referred to as Wearable Robots 
(WRs). A WR is classically defined as a mechatronic system 
designed around the shape and function of the human body, 
with segments and joints corresponding to those of the person 
it is externally coupled with [1]. These WRs are expected to 
interact and collaborate with the user in an intelligent manner. 

There are several challenges that must be faced to 
successfully introduce WRs as supportive or augmenting 
mobile devices. The main challenge lies in reducing the 
metabolic energy consumption of the user, while 
simultaneously minimizing the energy requirements of the 
actuators. The problems of energy requirements are being 
tackled on several fronts. On the one hand, more efficient 
actuators and more powerful batteries are being developed. On 
the other hand, changes are being made to the structural design 
of the WR. These changes can consist of making the WR more 
lightweight, or adding springs to the joints that store and 
release energy throughout the gait cycle. 

Thus, for the new generation of WRs, it is important that 
the mechanical design is energetically optimized. This can lead 
to designs that do not follow the classical definition of WRs, 
where the human and mechanical joints coincide. However, it 
is very difficult to predict how people will react to, and interact 
with, these new types of WRs. Users may adjust their gait 
patterns in response to the mechanical restrictions or properties 
of the device. In this paper we propose a new method to 
simulate different WR designs using the existing gait trainer 
LOPES (Lower Extremity Powered ExoSkeleton). 

This work was supported by the EU within the EVRYON Collaborative 
Project (Evolving Morphologies for Human-Robot Symbiotic Interaction, 
Project FP7-ICT-2007-3-231451). 
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optimal stride time is selected on the basis of the pendular 
dynamics of the swing leg [10]. The increase in EMG patterns 
during walking with the mass are also in agreement with the 
literature in the sense that the muscles that initiate, propagate, 
and terminate leg swing generally increase their activation 
pattern. This is primarily caused by the fact that the weight 
increases the inertia around the knee joint. 

Simulation of the mass resulted in a smaller increase in 
EMG, stride time, and heart rate, compared to walking in the 
transparent mode with the actual weight attached to the ankle. 
As mentioned above this could also be due to the filtering of 
the potentiometers. When the estimated accelerations are too 
small, the torques calculated by the inverse model of the WR 
will be too small, resulting in less torque that the subject needs 
to overcome to walk normally, and consequently a smaller 
increase in EMG. Another reason that might explain why 
simulating the mass tends to result in a smaller increase in 
EMG is that the LOPES can only apply the joint torques 
corresponding to the simulated mass. The vertical and 
horizontal forces at the hip, which are present when the 
subject carries the real mass, cannot be applied by LOPES.    

 

V. CONCLUSION 

In conclusion, the preliminary results presented in this 
paper suggest that LOPES can be used to render different WRs.  
However, more subjects must be included to see if the results 
are consistent and more effort should be put in retrieving 
proper estimations for the velocity and acceleration. The next 
steps will be to improve the model, study how subjects react to 
more complex WRs, and investigate if subjects can exploit the 
dynamics of intelligent and energy efficient WR designs, like 
the lightweight WRs with springs that store and release energy 
throughout the gait cycle. 

 

REFERENCES 

[1] J. L. Pons, Wearable Robots: Biomechatronic 
Exoskeletons: Wiley, 2008. 

[2] J. F. Veneman, et al., "Design and Evaluation of the 
LOPES Exoskeleton Robot for Interactive Gait 
Rehabilitation," IEEE Trans Neural Syst Rehabil Eng, 
vol. 15, pp. 379-386, Sep 2007. 

[3] B. Koopman, et al., "In vivo measurement of human knee 
and hip dynamics using MIMO system identification " 
32nd Annual International IEEE EMBS Conference, 
August 31 - September 4, 2010, 2010. 

[4] J. Buchli, et al., "Frequency analysis with coupled 
nonlinear oscillators," Physica D, vol. 237, pp. 1705-
1718, 2008. 

[5] l. Righetti, et al., "Dynamic hebbian learning in adaptive 
frequency oscillators," Physica D, vol. 216, pp. 269-281, 
2006. 

[6] A. Gams, et al., "On-line learning and modulation of 
periodic movements with nonlinear dynamical systems," 
Auton Robot, vol. 27, pp. 3-23, 2009. 

[7] R. C. Browning, et al., "The Effects of Adding Mass to 
the Legs on the Energetics and Biomechanics of 
Walking," Medicine & Science in Sports & Exercise, vol. 
39, pp. 515-525, 2007. 

[8] E. H. van Asseldonk, et al., "The Effects on Kinematics 
and Muscle Activity of Walking in a Robotic Gait Trainer 
During Zero-Force Control," IEEE Trans Neural Syst 
Rehabil Eng, vol. 16, pp. 360-370, Aug 2008. 

[9] R. C. Browning, et al., "The effects of adding mass to the 
legs on the energetics and biomechanics of walking," 
Med Sci Sports Exerc, vol. 39, pp. 515-25, Mar 2007. 

[10] K. G. Holt, et al., "The force-driven harmonic oscillator 
as a model for human locomotion," Hum. Mov. Sci, vol. 
9, pp. 55-68, 1990. 

 

 
     
 

753




